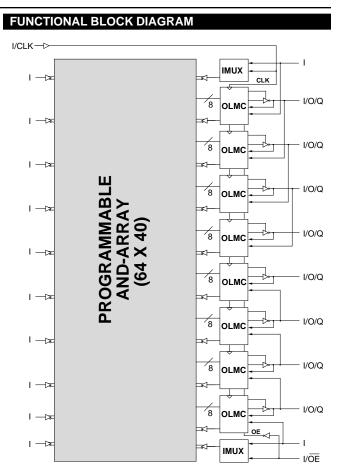


GAL20V8/883

High Performance E²CMOS PLD Generic Array Logic[™]

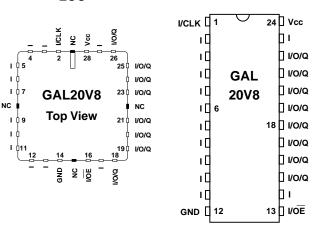
FEATURES


- HIGH PERFORMANCE E²CMOS[®] TECHNOLOGY — 10 ns Maximum Propagation Delay
- Fmax = 62.5 MHz
- 7 ns Maximum from Clock Input to Data Output
- TTL Compatible 12 mA Outputs
- UltraMOS[®] Advanced CMOS Technology
- 50% REDUCTION IN POWER FROM BIPOLAR — 75mA Typ Icc on Low Power Device
- E² CELL TECHNOLOGY
- Reconfigurable Logic
- Reprogrammable Cells
- 100% Tested/Guaranteed 100% Yields
- High Speed Electrical Erasure (<100ms)
- 20 Year Data Retention
- EIGHT OUTPUT LOGIC MACROCELLS
 - Maximum Flexibility for Complex Logic Designs
 - Programmable Output Polarity
 - Also Emulates 24-pin PAL[®] Devices with Full Function/Fuse Map/Parametric Compatibility
- PRELOAD AND POWER-ON RESET OF ALL REGISTERS — 100% Functional Testability
- APPLICATIONS INCLUDE:
 - DMA Control
- State Machine Control
- High Speed Graphics Processing
- Standard Logic Speed Upgrade
- ELECTRONIC SIGNATURE FOR IDENTIFICATION

DESCRIPTION

The GAL20V8/883 is a high performance E²CMOS programmable logic devices processed in full compliance to MIL-STD-883. This military grade device combines a high performance CMOS process with Electrically Erasable (E²) floating gate technology to provide the highest speed/power performance available in the 883 qualified PLD market.

The generic GAL architecture provides maximum design flexibility by allowing the Output Logic Macrocell (OLMC) to be configured by the user. The GAL20V8/883 is capable of emulating all standard 24-pin PAL[®] devices with full function/fuse map/parametric compatibility.


Unique test circuitry and reprogrammable cells allow complete AC, DC, and functional testing during manufacture. Therefore, Lattice Semiconductor guarantees 100% field programmability and functionality of all GAL products. In addition, 100 erase/ write cycles and data retention in excess of 20 years are guaranteed.

PIN CONFIGURATION

LCC

Copyright © 1996 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. Tel. (503) 681-0118; 1-888-ISP-PLDS; FAX (503) 681-3037; http://www.latticesemi.com

1996 Data Book

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply voltage V _{cc} –0.5 to +7V
Input voltage applied2.5 to V _{cc} +1.0V
Off-state output voltage applied -2.5 to V_{cc} +1.0V
Storage Temperature –65 to 150°C
Case Temperature with
Power Applied55 to 125°C
1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device.

Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

CaseTemperature (T _c)	–55 to 125°C
Supply voltage (V _{cc})	
with Respect to Ground .	+4.50 to +5.50V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER		CONDITION		MIN.	TYP. ²	MAX.	UNITS
VIL	Input Low Voltage				Vss – 0.5	_	0.8	V
V ΙΗ	Input High Voltage				2.0	_	Vcc+1	V
lı∟	Input or I/O Low Leal	kage Current	$0V \le \mathbf{V}_{\text{IN}} \le \mathbf{V}_{\text{IL}} (MAX.)$		_	_	-10	μA
Ін	Input or I/O High Lea	kage Current	$3.5V$ ih $\leq V$ in $\leq V$ cc		_	_	10	μA
VOL	Output Low Voltage		IOL = MAX. Vin = VIL or VIH		_		0.5	V
V он	Output High Voltage		IOH = MAX. Vin = VIL or VIH		2.4		_	V
IOL	Low Level Output Cu	Low Level Output Current				—	12	mA
Юн	High Level Output Current						-2.0	mA
OS ¹	Output Short Circuit	Current	$V_{CC} = 5V$ $V_{OUT} = 0.5V$ $T_{A} = 25^{\circ}C$		-30	_	-150	mA
Icc	Operating Power	V IL = 0.5V V	/ ін = 3.0V	L -10/-15/-20		75	130	mA
	Supply Current	ftoggle = 15MH	Iz Outputs Open					

1) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.

2) Typical values are at Vcc = 5V and TA = 25 °C

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

PARAMETER COND		DESCRIFTION		10	-	15	-		
				MAX.	MIN.	MAX.	MIN.	MAX.	UNITS
t pd	A	Input or I/O to Combinational Output	2	10	2	15	2	20	ns
t co	А	Clock to Output Delay	1	7	1	12	1	15	ns
tcf ²	_	Clock to Feedback Delay	-	7	_	12		15	ns
t su	_	Setup Time, Input or Feedback before Clock1	10	—	12	_	15	_	ns
t h	_	Hold Time, Input or Feedback after Clock↑	0	-	0	_	0	_	ns
	A	Maximum Clock Frequency with External Feedback, 1/(tsu + tco)	58.8	-	41.6	_	33.3	_	MHz
f max ³	A	Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf)	58.8	-	41.6	_	33.3	_	MHz
	A Maximum Clock Frequency with No Feedback		62.5	_	50	_	41.6	_	MHz
t wh	_	Clock Pulse Duration, High	8	_	10	_	12		ns
twl	_	Clock Pulse Duration, Low	8	-	10	—	12	_	ns
t en	В	Input or I/O to Output Enabled	_	10	_	15	_	20	ns
	В	B OE to Output Enabled		10	_	15	—	18	ns
t dis	С	Input or I/O to Output Disabled	-	10	—	15	_	20	ns
	С	OE to Output Disabled	_	10		15	_	18	ns

1) Refer to Switching Test Conditions section.

2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.

3) Refer to fmax Descriptions section.

CAPACITANCE ($T_A = 25^{\circ}C$, f = 1.0 MHz)

SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C ₁	Input Capacitance	10	pF	$V_{cc} = 5.0V, V_1 = 2.0V$
C _{I/O}	I/O Capacitance	10	pF	$V_{cc} = 5.0V, V_{V0} = 2.0V$

*Guaranteed but not 100% tested.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply voltage V _{cc} –0.5 to +7V
Input voltage applied -2.5 to V _{cc} +1.0V
Off-state output voltage applied -2.5 to V _{cc} +1.0V
Storage Temperature –65 to 150°C
Case Temperature with
Power Applied55 to 125°C
1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. These

Ratings" may cause permanent damage to the device. These are stress only ratings and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

RECOMMENDED OPERATING COND.

CaseTemperature (T _c)	–55 to 125°C
Supply voltage (V _{cc})	
with Respect to Ground .	+4.50 to +5.50V

DC ELECTRICAL CHARACTERISTICS

Over Recommended Operating Conditions (Unless Otherwise Specified)

SYMBOL	PARAMETER		CONDITION		MIN.	TYP. ²	MAX.	UNITS
VIL	Input Low Voltage				Vss – 0.5		0.8	V
VIH	Input High Voltage				2.0	—	Vcc+1	V
lı∟	Input or I/O Low Leal	kage Current	$0V \leq V_{IN} \leq V_{IL} (MAX.)$		_	—	-10	μA
Ін	Input or I/O High Lea	kage Current	$V_{\text{IH}} \leq V_{\text{IN}} \leq V_{\text{CC}}$		_	_	10	μA
VOL	Output Low Voltage	ow Voltage IoL = MAX. Vin = VIL or VIH		_	_	0.5	V	
V он	Output High Voltage		І ОН = MAX. V IN = V IL Or V IH		2.4		_	V
IOL	Low Level Output Cu	rrent				—	12	mA
Юн	High Level Output Cu	urrent					-2.0	mA
OS ¹	Output Short Circuit	Current	$V_{CC} = 5V$ $V_{OUT} = 0.5V$ $T_A = 25^{\circ}C$		-30	—	-150	mA
Icc	Operating Power	V IL = 0.5V V	И н = 3.0V	L -15/-20	_	75	130	mA
	Supply Current	f _{toggle} = 25MH	Iz Outputs Open					

1) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester ground degradation. Guaranteed but not 100% tested.

2) Typical values are at Vcc = 5V and TA = 25 °C

AC SWITCHING CHARACTERISTICS

Over Recommended Operating Conditions

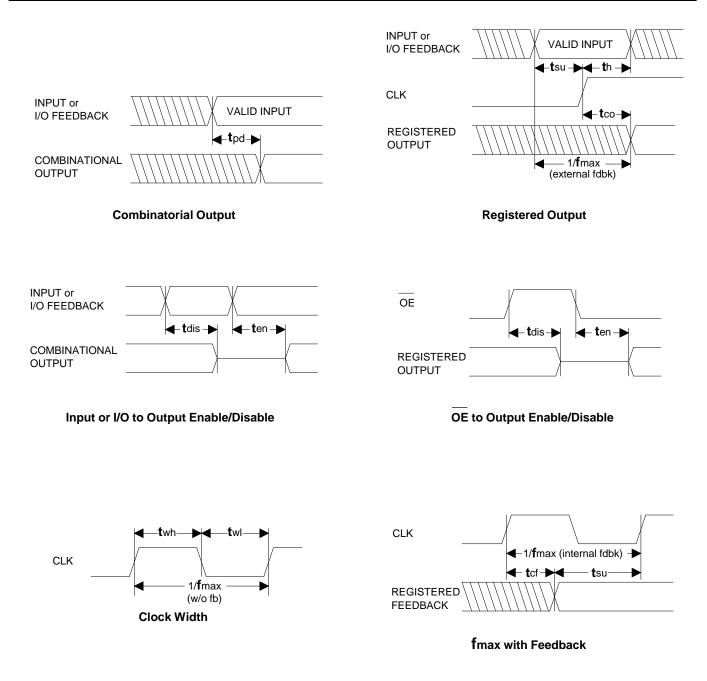
	TEST	DESCRIPTION		15	-20		UNITS
				MAX.	MIN.	MAX.	UNITS
t pd	А	Input or I/O to Combinational Output	3	15	3	20	ns
t co	Α	Clock to Output Delay	2	12	2	15	ns
tcf ²		Clock to Feedback Delay		12	—	15	ns
t su		Setup Time, Input or Feedback before Clock	12		15	_	ns
t h		Hold Time, Input or Feedback after Clock	0		0		ns
	A	Maximum Clock Frequency with External Feedback, 1/(tsu + tco)	41.6		33.3		MHz
f max ³	A	Maximum Clock Frequency with Internal Feedback, 1/(tsu + tcf)	41.6		33.3	_	MHz
	A	Maximum Clock Frequency with No Feedback		_	41.6	_	MHz
t wh	_	Clock Pulse Duration, High	10		12	_	ns
twl		Clock Pulse Duration, Low	10		12		ns
t en	В	Input or I/O to Output Enabled	_	15	_	20	ns
	В	OE to Output Enabled		15	_	18	ns
t dis	С	Input or I/O to Output Disabled	_	15	_	20	ns
	С	OE to Output Disabled		15	_	18	ns

1) Refer to Switching Test Conditions section.

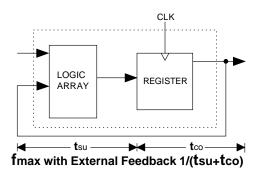
2) Calculated from fmax with internal feedback. Refer to fmax Descriptions section.

3) Refer to **fmax Descriptions** section.

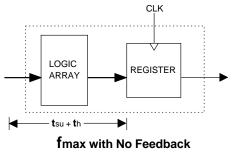
CAPACITANCE ($T_{A} = 25^{\circ}C$, f = 1.0 MHz)


SYMBOL	PARAMETER	MAXIMUM*	UNITS	TEST CONDITIONS
C	Input Capacitance	10	pF	$V_{cc} = 5.0V, V_1 = 2.0V$
C _{I/O}	I/O Capacitance	10	pF	$V_{\rm CC} = 5.0$ V, $V_{\rm I/O} = 2.0$ V

*Guaranteed but not 100% tested.


Specifications GAL20V8/883

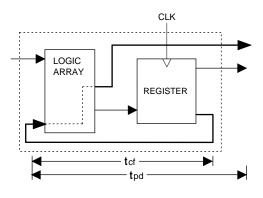
SWITCHING WAVEFORMS



fmax DESCRIPTIONS

Note: fmax with external feedback is calculated from measured tsu and tco.

Note: fmax with no feedback may be less than 1/(twh + twl). This is to allow for a clock duty cycle of other than 50%.


SWITCHING TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	3ns 10% – 90%
Input Timing Reference Levels	1.5V
Output Timing Reference Levels	1.5V
Output Load	See Figure

3-state levels are measured 0.5V from steady-state active level.

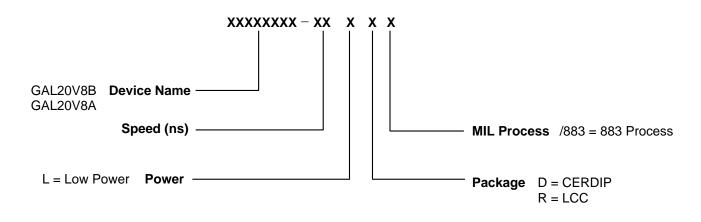
Output Load Conditions (see figure)

Tes	Test Condition		R2	C∟
Α		390Ω	750Ω	50pF
В	Active High	~	750Ω	50pF
	Active Low	390Ω	750Ω	50pF
С	Active High	∞	750Ω	5pF
	Active Low	390Ω	750Ω	5pF

fmax with Internal Feedback 1/(tsu+tcf)

Note: tcf is a calculated value, derived by subtracting tsu from the period of fmax w/internal feedback (tcf = 1/fmax - tsu). The value of tcf is used primarily when calculating the delay from clocking a register to a combinatorial output (through registered feedback), as shown above. For example, the timing from clock to a combinatorial output is equal to tcf + tpd.

*C L INCLUDES TEST FIXTURE AND PROBE CAPACITANCE



GAL20V8 ORDERING INFORMATION (MIL-STD-883 and SMD)

					Ordering #		
Tpd (ns)	Tsu (ns)	Tco (ns)	lcc (mA)	Package	MIL-STD-883	SMD #	
10	10	7	130	24-Pin CERDIP	GAL20V8B-10LD/883	5962-8984004LA	
			130	28-Pin LCC	GAL20V8B-10LR/883	5962-89840043A	
15	12	12	130	24-Pin CERDIP	GAL20V8B-15LD/883	5962-8984003LA	
			130	28-Pin LCC	GAL20V8A-15LR/883	5962-89840033A	
20	15	15	130	24-Pin CERDIP	GAL20V8B-20LD/883	5962-8984002LA	
			130	28-Pin LCC	GAL20V8A-20LR/883	5962-89840023A	

Note: Lattice Semiconductor recognizes the trend in military device procurement towards using SMD compliant devices, as such, ordering by this number is recommended.

PART NUMBER DESCRIPTION

Copyright © 1996 Lattice Semiconductor Corporation.

E²CMOS, GAL, ispGAL, ispLSI, pLSI, pDS, Silicon Forest, UltraMOS, Lattice Logo, L with Lattice Semiconductor Corp. and L (Stylized) are registered trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, In-System Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD, ispGDS, ispStarter, ispSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice Semiconductor Corporation. ISP is a service mark of Lattice Semiconductor Corporation. All brand names or product names mentioned are trademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation (LSC) products are made under one or more of the following U.S. and international patents: 4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296 US, 5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US, 5,245,226 US, 5,251,169 US, 5,272,666 US, 5,281,906 US, 5,295,095 US, 5,329,179 US, 5,331,590 US, 5,336,951 US, 5,353,246 US, 5,357,156 US, 5,359,573 US, 5,394,033 US, 5,394,037 US, 5,404,055 US, 5,418,390 US, 5,493,205 US, 0194091 EP, 0196771B1 EP, 0267271 EP, 0196771 UK, 0194091 GB, 0196771 WG, P3686070.0-08 WG. LSC does not represent that products described herein are free from patent infringement or from any third-party right.

The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation (LSC) reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors contained herein or to advise any user of this document of any correction if such be made. LSC recommends its customers obtain the latest version of the relevant information to establish, before ordering, that the information being relied upon is current.

LSC warrants performance of its products to current and applicable specifications in accordance with LSC's standard warranty. Testing and other quality control procedures are performed to the extent LSC deems necessary. Specific testing of all parameters of each product is not necessarily performed, unless mandated by government requirements.

LSC assumes no liability for applications assistance, customer's product design, software performance, or infringements of patents or services arising from the use of the products and services described herein.

LSC products are not authorized for use in life-support applications, devices or systems. Inclusion of LSC products in such applications is prohibited.

LATTICE SEMICONDUCTOR CORPORATION 5555 Northeast Moore Court Hillsboro, Oregon 97124 U.S.A. Tel.: (503) 681-0118 FAX: (503) 681-3037 http://www.latticesemi.com

November 1996